DDOT Traffic Engineering and Safety

Standard Operating Procedures for Request for Roadway Modifications and Parking Adjustments

The DDOT Traffic Engineering Division Requires the following information for request to modify or adjust roadway operations and peak hour parking for special events. Depending on the location and time of day the requirements are listed below:

- Advance notice is required for any modifications (Emergency NO Parking Signs – Permit office to handle)
- Parking Meter Revenue must be paid (Permit office to handle)
- Notification to all District and Federal Agencies (basic Traffic Control Plan) – MPD, FEMS, HSEMA
- No bus stops or fire hydrants can be blocked
- Notification to all affected businesses, schools, Metro, Circulator, within the area
- Notification to all Media Outlets – radio, TV, cable, Twitter, Facebook etc.
- Notification to Vehicular, Bicycle and Pedestrian Traffic - Advance Warning, etc.
- Appropriate Pedestrian and ADA accommodations
- Traffic Signal Operation must be reviewed
- Appropriate Traffic Control Devices as per the Manual on Uniform Traffic Control Devices (MUTCD 2009) {Signs (regulatory, warning, detour, way finding), Temporary Pavement Markings, Dynamic Message Signs (DMS), Barricades, Cones, Channelizing and Lighting Devices, etc.}
- If the Traffic Engineering and Safety Team determines that additional assistance is needed at key locations-using the following criteria: location, vehicular-pedestrian-bicycle volume and conflicts, intersection complexity, special services, Homeland Security issues, etc. Then assistance will be needed from:
 a. Event organizers Certified Flaggers
 b. MPD/FEMS/ - U.S. Capitol Police, U.S. Protective Services, National Park Service Police, METRO Police etc.
- We reserve the right to modify and adjust any request due to traffic conditions

Coordinate with DDOT PIO and advise DDOT TMC, MPD, FEMS and HSEMA
PARKING AREA CLOSURE
The following must be addressed/provided in the plans but not limited to:

A. A conceptual MOT Plan shall be created, identifying current roadway configuration, lane line dimensions, length of the area to be occupied, preliminary duration and design of detours, lane closures and/or restrictions should be considered as well the impacts of construction on local access.

B. Identify existing fire hydrants, bus stops, parking meters (Do not block fire hydrant, bus stop, parking meters (without payment), and important utility structure. If bus stop or metro rail entrance is affected permit holder must contact and coordinate with WMATA and parking meter officials prior to the start of the project).

C. Identify existing alleys (Vehicular access to the alley shall be maintained. Alleys shall remain open if it provides access for trash collection and public service activities)

D. -Dimension between signs
- Merging Taper length (Please note Merging Taper should be at least L)
- Sign designation
- Sign plaque sizes, etc.
RIGHT LANE CLOSURE
The following must be addressed/provided in the plans but not limit to:

A. A conceptual MOT Plan shall be created, identifying current roadway configuration, lane line dimensions, length of the area to be occupied, preliminary duration and design of detours, lane closures and/or restrictions should be considered as well the impacts of construction on local access.

B. Identify existing fire hydrants, bus stops, parking meters (Do not block fire hydrant, bus stop, parking meters without payment), and important utility structure. If bus stop or metro rail entrance is affected permit holder must contact and coordinate with WMATA and parking meter officials prior to the start of the project.

C. Identify existing alleys (Vehicular access to the alley shall be maintained. Alleys shall remain open if it provides access for trash collection and public service activities)

D. -Dimension between signs
 -Merging Taper length (Please note Merging Taper should be at least L)
 -Sign designation
 -Sign/ plaque sizes, etc.
STREET CLOSURE
Figure 9-7. Typical Application: Road Closure and Detour for One Travel Direction
Figure 9-8. Typical Application: Road Closure and Detour for Two Travel Directions
SIDEWALK CLOSURE
Appendix
Buffer Space (longitudinal) provides protection for traffic and workers.

Traffic Space allows traffic to pass through the activity area.

Buffer Space (lateral) provides protection for traffic and workers.

Work Space is set aside for workers, equipment, and material storage.

Termination Area lets traffic resume normal operations.

Activity Area is where work takes place.

Transition Area moves traffic out of its normal path.

Advance Warning Area tells traffic what to expect ahead.

Legend:
- Direction of travel
- Channelizing device
- Work space
- Sign
Figure 6F-7. Channelizing Devices

DRUM
- Facing traffic
- 18 inches MIN.
- 4 to 6 inches
- 36 inches MIN.

TUBULAR MARKERS
- Night and/or freeway High-speed roadway (≥ 45 mph)
- Day and low-speed roadway (≤ 40 mph)
- 2 inches
- 3 inches
- 2 to 6 inches
- 3 inches
- 28 inches MIN.
- 18 inches MIN.
- 3 inches

VERTICAL PANEL
- More than 36 inches
- 4 or 6 inches
- 4 or 6 inches
- 28 inches MIN.
- 18 inches MIN.
- 3 to 4 inches
- 6 inches
- 2 inches
- 4 inches

CONES
- Day and low-speed roadway (≤ 40 mph)
- 12 inches MAX.
- 8 to 12 inches
- 36 inches MIN.
- 24 inches MIN.
- 45°

TYPE 1 BARRICADE
- 36 inches MIN.
- 24 inches MIN.
- 8 to 12 inches
- 45°

TYPE 2 BARRICADE
- 36 inches MIN.
- 24 inches MIN.
- 8 to 12 inches
- 45°

TYPE 3 BARRICADE
- 5 ft MIN.
- 8 to 12 inches
- 4 ft MIN.

DIRECTION INDICATOR BARRICADE
- 12 inches
- 8 inches
- 45°

* Warning lights (optional)
** Rail stripe widths shall be 6 inches, except that 4-inch wide stripes may be used if rail lengths are less than 36 inches. The sides of barricades facing traffic shall have retroreflective rail faces.
Table 6H-2. Meaning of Symbols on Typical Application Diagrams

<table>
<thead>
<tr>
<th>Symbol/Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrow board</td>
<td></td>
</tr>
<tr>
<td>Arrow board support or trailer (shown facing down)</td>
<td></td>
</tr>
<tr>
<td>Changeable message sign or support trailer</td>
<td></td>
</tr>
<tr>
<td>Channelizing device</td>
<td></td>
</tr>
<tr>
<td>Crash cushion</td>
<td></td>
</tr>
<tr>
<td>Direction of temporary traffic detour</td>
<td></td>
</tr>
<tr>
<td>Direction of traffic</td>
<td></td>
</tr>
<tr>
<td>Flagger</td>
<td></td>
</tr>
<tr>
<td>High-level warning device (Flag tree)</td>
<td></td>
</tr>
<tr>
<td>Longitudinal channelizing device</td>
<td></td>
</tr>
<tr>
<td>Luminaire</td>
<td></td>
</tr>
<tr>
<td>Pavement markings that should be removed for a long-term project</td>
<td></td>
</tr>
<tr>
<td>Shadow vehicle</td>
<td></td>
</tr>
<tr>
<td>Sign (shown facing left)</td>
<td></td>
</tr>
<tr>
<td>Surveyor</td>
<td></td>
</tr>
<tr>
<td>Temporary barrier</td>
<td></td>
</tr>
<tr>
<td>Temporary barrier with warning light</td>
<td></td>
</tr>
<tr>
<td>Traffic or pedestrian signal</td>
<td></td>
</tr>
<tr>
<td>Truck-mounted attenuator</td>
<td></td>
</tr>
<tr>
<td>Type 3 barricade</td>
<td></td>
</tr>
<tr>
<td>Type 3 barricade with warning light</td>
<td></td>
</tr>
<tr>
<td>Warning light</td>
<td></td>
</tr>
<tr>
<td>Work space</td>
<td></td>
</tr>
<tr>
<td>Work vehicle</td>
<td></td>
</tr>
</tbody>
</table>

Table 6H-3. Meaning of Letter Codes on Typical Application Diagrams

<table>
<thead>
<tr>
<th>Road Type</th>
<th>Distance Between Signs**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Urban (low speed)*</td>
<td>100 feet</td>
</tr>
<tr>
<td>Urban (high speed)*</td>
<td>350 feet</td>
</tr>
<tr>
<td>Rural</td>
<td>500 feet</td>
</tr>
<tr>
<td>Expressway / Freeway</td>
<td>1,000 feet</td>
</tr>
</tbody>
</table>

* Speed category to be determined by highway agency

** The column headings A, B, and C are the dimensions shown in Figures 6H-1 through 6H-46. The A dimension is the distance from the transition or point of restriction to the first sign. The B dimension is the distance between the first and second signs. The C dimension is the distance between the second and third signs. (The “first sign” is the sign in a three-sign series that is closest to the TTC zone. The “third sign” is the sign that is furthest upstream from the TTC zone.)

Table 6H-4. Formulas for Determining Taper Length

<table>
<thead>
<tr>
<th>Speed (S)</th>
<th>Taper Length (L) in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mph or less</td>
<td>L = (\frac{WS^3}{60})</td>
</tr>
<tr>
<td>45 mph or more</td>
<td>L = WS</td>
</tr>
</tbody>
</table>

Where:
L = taper length in feet
W = width of offset in feet
S = posted speed limit, or off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed in mph